Some conditions for weak convergence to equilibrium of nonlinear contraction semigroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence to Lévy stable processes under some weak dependence conditions

For a strictly stationary sequence of random vectors in R we study convergence of partial sums processes to a Lévy stable process in the Skorohod space with J1-topology. We identify necessary and sufficient conditions for such convergence and provide sufficient conditions when the stationary sequence is strongly mixing.

متن کامل

On the Convergence of Difference Approximations to Nonlinear Contraction Semigroups in Hubert Spaces

Convergence properties of the difference schemes k k (S) h S a-u +i + Z ß-Au ., = 0, n > 0, ;=0 ' nT' /=0 ' " ' for evolution equations (E) ^1 + Au(t) = o, t > 0; u(0) = "0 e dJÄ) are studied. Here A is a nonlinear, maximally monotone operator in a real Hubert space. It is shown, in particular, that if the scheme (S) is consistent and stable for the test equation x' = Xx for \ S C K, where K is...

متن کامل

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

متن کامل

Weak convergence theorem for Lipschitzian pseudocontraction semigroups in Banach spaces

In this work, theorems of weak convergence of an implicit iterative algorithm with errors for treating a nonexpansive semigroup and a Lipschitzian pseudocontractive semigroup are estabilshed in the framework of real Banach spaces. 2010 Mathematics Subject Classification. Primary 60J05; Secondary 60J20.

متن کامل

Convergence to a Positive Equilibrium for Some Nonlinear Evolution Equations in a Ball

(1.1)P ut −∆u = f(u) in R × Ω; u = 0 on R × ∂Ω where f ∈ C(R) generates a local semi-flow on H 0 (Ω)∩L∞(Ω). If u : R×Ω→ R is a global bounded solution of (1.1)P , then due to the energy dissipation, and as a consequence of LaSalle’s invariance principle, the ω-limit set ω(u) of u consists of stationary solutions only: in particular, as t→ +∞, u(t, x) approaches the set of solutions of the ellip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1978

ISSN: 0022-0396

DOI: 10.1016/0022-0396(78)90125-0